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The 4He3 weakly interacting system is analysed by constructing the full interaction as a sum
of two-body (2B) potentials chosen among the most recent proposals from the literature.
The spatial density distributions of the three bound atoms are obtained using a diffusion
Monte Carlo (DMC) algorithm and a stochastic analysis under specific geometric constraints
is carried out with the resulting densities in order to recover a more conventional structural
picture for such floppy system. The total binding energies were obtained with the chosen
potentials analysed in the present work, using the DMC algorithm, and are compared with
previous published results. The ensuing spatial distributions are analysed in some detail to
select the dominant structures from a conventional triangular description of this very floppy
molecule.
Keywords: Helium clusters; Two-body interaction potentials; Diffusion Monte Carlo
algorithm; Stochastic analysis; Quantum chemistry; Ab initio calculations.

The detailed study of smaller 4He clusters, in particular dimers and trimers,
is an important initial step for a better understanding of the properties of
helium liquid droplets, for interpreting the superfluid features in 4He films
and for predicting the possible occurrence of Bose–Einstein condensates in-
volving such bosons1–4. The problem of evaluating the binding energies of
trimers involving both 4He and 3He, for instance, has therefore caused re-
newed attention in the last few years5–8 and has attracted a great deal of
work, both experimental9 and theoretical10. One of the additional interests
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in the properties of the trimer clusters comes from the fact that the very
small binding energy for their ground states also sparked the analysis of
their excited states and of the possible existence of Efimov states5,6,11 for
such weakly bound species.

A further feature of overall properties of the 4He molecular aggregates co-
mes from the unusually large spatial delocalization of its component atoms
as opposed to the more conventional shapes of Ne3 and Ar3 aggregates12,13.
Thus, the discussion on the actual, most reliable value of the ground state
binding energy has been coupled to the question of how to define the spa-
tial shape of such an aggregate and how to represent it in terms of the more
conventional “balls-and-sticks” description of a molecular structure (see,
e.g., the discussion in ref.14).

In the present study we decided to perform a stochastic analysis of the
dominant configurations through which one could describe the spatial
shape of the 4He3 aggregate. In particular, we have employed some of the
more recent among the many existing proposals for the two-body (2B)
interatomic potentials and have used them to describe the three-particle
interaction as a sum of 2B forces. The last approach has been the one
most frequently adopted in the theoretical studies since it turns out to
be reasonable to assume that three-body forces play a rather minor role in
this system, at least for situations which are far from the bulk8. We have
therefore carried out the calculation of the nodeless ground state wave-
function, and of various spatial observables associated with it, and have
also examined the changes occurring with the different 2B potentials em-
ployed. We have computed the total binding energies by employing here
the DMC algorithm discussed briefly below and compared our results with
earlier findings.

THE COMPUTATIONAL METHOD

The DMC method has been extensively discussed in a number of pa-
pers15–18. We therefore refer the reader to that literature for a fuller discus-
sion, while this section merely summarises the main features of the
method.

The key idea consists in the isomorphism between the solutions given by
a time-dependent many-body Schrödinger equation and those obtained
from a multidimensional reaction-diffusion equation with anisotropic dif-
fusion coefficients. Introducing the imaginary time τ = it/h, shifting the ab-
solute energy scale by a quantity Eref and identifying the inverse mass terms
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with diffusion coefficients Dj and the shifted potential [V(r) – Eref] with a
position-dependent rate term k(r) lead to the following equations
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where the last equation could be viewed as a diffusion equation plus a rate
term
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Knowledge of the structure of the wavefunction can be fruitfully ex-
ploited to gain increased accuracy by introducing a guiding trial function
ΨT, that is meant to approximate the true wavefunction. A common ansatz
for atomic clusters and bulk systems expresses ΨT as a product over a set of
one-dimensional functions Φ defined over all pairs of particles

Ψ ΦT ( , ) ( ; )r p r p=
<
∏ ij
i j

ij , (4)

where rij is the distance between particles i and j, and p denotes the set of
adjustable parameters controlling the trial wavefunction. Previous experi-
ence with helium clusters8,19 showed that Jastrow functions are a good
choice for the Φ’s and thus they have been employed by us in the present
work. In particular, we used the same trial function already used in the ear-
lier calculations8.

The introduction of ΨT results in additional drift terms in the diffusion
equation which direct the random walkers into regions where the trial
wavefunction is large. At the same time, the rate terms are controlled by
the local energy values that are given by
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T T
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which is a smoother function of the coordinates than the potential and re-
duces the variance of the energy estimators
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A random walk technique is used to calculate the steady-state solution of
the diffusion equation corresponding to our quantum problem. A large en-
semble of random walkers (see details below) is propagated with time steps
∆τ starting from some arbitrary initial distribution. The propagation from τ
to τ + ∆τ consists of random Gaussian displacements of the Cartesian coor-
dinates, of systematic moves under the influence of the quantum drift force
F(r) = ΨT∇ lnΨT and an update of the weight carried by each random walker.
Additionally, we use a Metropolis-type acceptance check for each attempted
move such that for arbitrary time steps the number density of walkers is
given by ΨT

2 while their weights are a stochastic sample of the local value of
Ψ/ΨT. The short time approximation to the Green’s function is given by
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The modified time step ∆τeff appears in the growth term of Eq. (5) because
not all moves attempted according to G( ; )r r→ ′ ∆τ are accepted in the
Metropolis step17. Proposed moves from r to r′ are then carried out with
probability
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Walkers whose relative weight wrel = wi/W(τ) falls below a preselected
value wmin are eliminated randomly from the ensemble with probability
p– = 1 – wrel. Here W(τ) = Σi wi(τ) is the sum of weights20,21. Walkers whose
relative weight fall above that value are retained and assigned the average
weight W(τ)/nwalk with probability p+ = wrel. Walkers whose relative weight
grows beyond a maximum value wmax are split into nw = int(wrel + u) walkers
of weight wi/nw, where u is a uniform random number. The values of wmin
and wmax are chosen such that the average number of walkers remains ap-
proximately constant during the run, while the instantaneous ensemble
fluctuates. These mechanisms ensure that the walkers remain concentrated
in relevant regions of configuration space without introducing artificial
sources or sinks. After equilibration of the initial random walker distribu-
tion, the ensemble average of Elocal becomes identical with the ground state
energy irrespective of ΨT and is only subject to statistical fluctuations. The
ground state energy can also be computed from the rate at which the total
weight of the ensemble grows or decays as τ elapses.

In order to take into account the slow decay of the weak He–He interac-
tion terms as the distances increased, we have employed extended temporal
runs that ensure the correct sampling of the full PES by the random walkers
(for details, see below).

Arbitrary property expectation values 〈 $A〉 are computed by replacing
integrals by sums over samples
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where x’s indicate some general coordinates and the correct |Ψ|2 quantity is
obtained from the estimated, trial ΨT values. Expectation values of local op-
erators are directly accessible with the DMC scheme. In this case the inte-
gration reduces to an average over operator values A(x)
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∑
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The radial distribution of rare-gas atoms relative to the center of mass of
the trimer is computed as
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The radial distribution function can be easily converted to the spherically
averaged radial rare-gas density distribution ρ(R)

ρ
π
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n
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4 rad (14)

with n being the number of atoms in the aggregate.
One can further obtain, using the same procedure, the angular distribu-

tions associated with ϑ, corresponding to counting all the possible angles
between two bonds originating from any of the three atoms, ϑ ij , with the
normalization condition

Ptot d(cos ) cosϑ ϑ
−∫ =
1

1
1 (15)

From the above one can also extract directly the angular dependence,
subject to the same condition

Ptot d = 1( )ϑ ϑ
π

π

∫ (16)

and from it the distributions for each of the three ϑ ij angles of all the con-
figurations which are found to contribute to the final wavefunction for the
ground state.

In all the calculations we used an ensemble of variable size kept at an av-
erage size of 2000 random walkers by a proper choice of wmin and wmax. The
time step length was carefully checked for eliminating the time step bias
and an optimal value of 25 a.u. was found and used in all the calculations.
The effective time steps were very close to the nominal time step with ∆τeff
never smaller than 0.98 ∆τ. Given an initial random distribution of walkers,
the ensemble was propagated for several thousands of steps in order to
equilibrate it and then the energy estimators were collected over blocks
with a typical length of 8000 steps. The serial correlations between block
averages were carefully analysed by calculating the autocorrelation func-
tions in order to be sure that the final average was taken over independent
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blocks. All the averages were therefore calculated using a variable number
of blocks depending on the cluster size with a typical value of at least 500
blocks.

THE TWO-BODY INTERACTION POTENTIALS

As mentioned above, the last few years have witnessed a dramatic increase
in the number of papers dedicated to the theoretical investigation of the
molecular clusters containing 4He. Most of those investigations consist of
the computation of the trimer ground state energy and are based on differ-
ent approaches to the problem. Thus, some are based on variational meth-
ods6,8,19,22–24 while others employ a hyperspherical harmonics expansion in
configuration space5,13,25 or an integral equation formulation in momen-
tum space26,27. Further results were also obtained with a direct solution of
the two-dimensional Faddeev equations in configuration space28 or by us-
ing the three-dimensional Faddeev differential equations in the total angu-
lar momentum representation29. Very recently, the binding energy of 4He3
was obtained using several 2B potentials and a hard-core version of the
Faddeev differential equations10.

All the above calculations produced a variety of values for the binding
energy of 4He3 but, in most cases, either did not dwell on the expected
shape of the aggregate or simply made some general, vaguely qualitative
consideration on the configurations which were likely to dominate the
cluster description. In addition, an equally broad variety of atom–atom in-
teraction potentials were employed to carry out the calculations and there-
fore a detailed comparison between different results becomes even more
complicated.

In the present work we decided to employ four specific interatomic po-
tentials which have been recently suggested and which have all been tested
before with at least one of the theoretical methods listed above. We started
with the DMC procedure to generate ground state wavefunctions and em-
ployed them to see how such a floppy three-atom bound system could be
realistically described.

The oldest of the tested potentials is the one which we label here, in ac-
cord with common usage, the Hfd-b (He) potential of Aziz and others30.
The latter form was fitted to low-temperature second virial coefficients data
and accurate viscosity data obtained at room temperature, while at the
same time pinning the repulsive wall to the value computed by Ceperley
and Partridge17 at 1 a0. Such potential reproduced, within experimental er-
rors, viscosities and thermal conductivities, differential cross sections,

Collect. Czech. Chem. Commun. (Vol. 68) (2003)

Helium Bosonic Trimer 7



high-energy cross sections and backward glory oscillations. A further modi-
fication of the above potential was obtained by taking into consideration
additional ab initio data and by extending the range of experimental ob-
servables which could be reproduced by the modification32. It will be called
here the LM2M2 potential form.

More recently, a very accurate analytic representation of the He–He inter-
action, based on perturbation theory, has been given33 and widely used in
theoretical computations of the very last years. It will be used in the pres-
ent work with the acronym of TTY.

One final choice of the 2B interaction potential comes from a different
calculation based on the surface integral method34,35 and recently applied
to He-alkali atoms interactions36. It will be called the KTTY potential in the
present work.

Just to provide a qualitative, pictorial comparison of the four potential
curves which we employ in our analysis, we report in Fig. 1 the radial be-
haviour of such model 2B interactions. The left-hand panel in the figure
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FIG. 1
Potential energy curves of the 4He2 system employed in the present work. Left panel: overall
shapes of the four 2B potentials. Right panels: the upper part shows the onset of the repulsive
walls while the lower part reports the region of the attractive wells. The acronyms of the po-
tentials are explained in the main text
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shows the overall shapes of all four potentials, their well regions given on a
linear energy scale while their repulsive parts are given on a log scale. The
two panels on the right in the same figure show instead the detailed com-
parison between the shapes of their repulsive walls up to 10 cm–1 (upper
panel) and the same comparison between the depths and positions of their
attractive wells (lower panel). The following considerations could be easily
made:

(i) three of the potential functions exhibit very similar behaviour of
their low-energy repulsive walls, with the exception of the KTTY potential
which clearly shows a much softer shape and smaller turning points than
the others;

(ii) the well regions of the same three potentials as above are again very
close to each other, with the TTY interaction being the largest and with its
minimum value at the largest distance. On the other hand, the KTTY po-
tential is markedly stronger and presents a much deeper attractive well,
with its minimum position located at a smaller distance. It is interesting to
notice that the latter 2B potential is very different from the latest quantum
calculations which were deemed by the authors15,37 to be essentially exact.
We would also like to point out that other recent calculations38 for the total
energy of the helium dimer have produced a value in excellent agreement
with the Anderson’s results37, thus leaving no doubt that the later two po-
tentials are providing the best energy estimators for the dimer molecule.
We will see below that the above differences will be reflected in the final
values of the binding energies for the trimer ground states, while affecting
very little the general spatial properties of the corresponding wave-
functions. This point is particularly important for the analysis which we
have carried out in the present system.

We also present in Fig. 2 the behaviour of the estimated total minimum
energy (De) for each potential curve discussed in this work and of the corre-
sponding binding energy (Eb) obtained for the same set of potentials, as we
shall discuss below. The upper panel of the figure reports the De values and
also the zero-point-energy (ZPE) values as obtained from the Eb values of
the lower panel: De – D0 = ZPE. One clearly sees here the very large quan-
tum effects coming from the dominance of the ZPE values over the strength
of the interaction, a feature that gives already indications of the marked
spatial delocalization of the three nuclei discussed in the following.
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RESULTS AND DISCUSSION

The Angular Distributions

The converged calculations through the walkers propagation allow one to
obtain the final distributions for several properties of the trimer which can
help to analyse better the meaning of familiar concepts like “structure” or
“spatial arrangement” for the three bound atoms of this unusual system.
We will also extract additional microscopic properties of the DMC wave-
functions which have never been obtained before by other calculations on
the present system. In Fig. 3 we report the results of the calculations for the
angular distributions from one of the four 2B potentials employed here, the
TTY potential: all other 2B interactions behave essentially in the same way,
with only minor differences, as we will further discuss below. The two re-
ported panels show the same type of results, i.e. we give on the right-hand
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FIG. 2
Comparison of computed binding energies (Eb) from the 2B potential choices (lower panel)
and of the zero-point-energy (ZPE) values with the global potential minimum, De, for the four
potential functions (upper panel). � De = –Vmin, � ZPE; � Eb = –D0
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panel the total distribution of the cosines of any of the angles formed in
each triangular arrangement at the end of the calculations. Each distribu-
tion Ptot(cos ϑ) is normalized as discussed earlier and the range of the values
of the cosines is shown in each panel. Because of the fairly minor differ-
ences exhibited by the different 2B potentials, we only report in the figure
the behaviour of one of them, although the calculations were carried out
with all four potentials. It is interesting to make the following observations:

(i) the distribution presents a clear maximum in the region of the cos ϑ
values approaching 1.0 (≈0.96) indicating a marked dominance of configu-
rations containing at least one angle lower than 10°, i.e. close to giving a
quasi-collinear structures. However, the actual configurations with ϑ being
0°, which need to be matched by a corresponding set of configurations at
180° (i.e. for cos ϑ ≈ –1.0) are present but are much less prominent;

(ii) the general behaviour of the computed distributions is the one in
which the contributing weights of angular values from 180° to ≈0° steadily
increase, with a very marked gradient increase beyond ≅ 60°.

The above properties of the Ptot(cos ϑ) already indicate, albeit only tenta-
tively, that the dominant configurations do not appear to be equilateral
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FIG. 3
Computed angular distributions from DMC calculations using the TTY 2B potential of ref.33

Right panel: Ptot(cosϑ ) distribution; left panel: angular distributions for the sum of the angles
(ϑ ) and for each of the angles in the triangular configurations
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triangles as common sense might suggest, and as recently suggested by cal-
culations that used the hyperspherical coordinate approach in the adiabatic
approximation13. We further indicate that the collinear arrangements, char-
acterized by the presence of nonvanishing probability values for cos ϑ = 1.0
and –1.0, are indeed present, as suggested by earlier DMC calculations8,19,39,
but do not appear to be the dominant configurations within the distribu-
tion. One further piece of information which we could also gather from our
final results is obtained by separating, using all the configurations in the fi-
nal distributions, the relative span of each of the three angles and of their
sum. Such distributions are obviously related to the cosine distributions dis-
cussed earlier by a simple relationship obtained from the normalisation
condition of Eq. (16) from which we get: P(ϑ) = P(cos ϑ)sin ϑ.

The corresponding results are given, for each of the three angles and for
their sums, in the left-hand panels of the same Fig. 3. The choice has been
made of labelling as α the smallest of the three angles, β the intermediate
value and as γ the largest. The following can be gleaned from that panel:

(i) the overall maximum of the angles from all the contributing configu-
rations, and for all the different potentials, is around 35°. This datum ap-
pears to confirm that the equilateral configurations (with ϑ ≈ 60°) are not
dominating in the description of this quantum trimer13;

(ii) the region where β shows a maximum (i.e. around 60°) is a special re-
gion since the sequential constraint in the sampling (α < β < γ) causes the
(α = 60°, γ = 60°) situation to be negligible, while we can still have many
contributions and a strong peak for β at 60°. In other words, the equilateral
configurations are probably contributing but not very much, and therefore
hardly show up on the scale of our distributions;

(iii) the region of both α and β approaching 0° corresponds to a very
marked drop of probability values, as also happens when γ is approaching
180°. Although such behaviour comes from the sin ϑ factor which multi-
plies the P(cos ϑ), the overall lack of marked contributions from collinear
arrangements also confirms what was seen in the behaviour of P(cos ϑ) dis-
cussed before;

(iv) the largest of the angles in each contributing configuration clearly in-
dicates sizeable probability contributions, as expected, beyond ϑ ≈ 90° and
therefore suggests the presence of either isosceles or scalene structures
which are not far from the collinear arrangement. This feature is probably
causing the large contributions from α ≤ 20°, shown by the smallest angle,
and the sizeable contributions with β < 40–50° appearing in the panels.
Such distributions, in fact, tell us that the scalene configurations where two
4He atoms are closer to each other than the third atom are very important.
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Table I reports several expectation values of the angular parameters in its
lower part to confirm both the similar behaviour of all four potentials and
the fairly large standard deviations existing for the angular variables, a fur-
ther indication of the remarkable floppiness shown by the structure of this
system.

The Radial Distributions

As already mentioned before, the actual location of the bound atoms in
terms of various choices of relative distances can also be obtained from the
DMC calculations. Thus, from the final configurations given by each of the
2B potentials, we have computed the distributions of the atom–atom dis-
tances P(r) as defined in the previous Section. We also obtained the radial
distribution in units of Å–1 by evaluating P(r) × r2. Furthermore, we can gen-
erate radial locations for the three atoms as taken from the center-of-mass
(rcm) of each trimer configuration and their corresponding values in Å–1,
P r r( )cm cm

2× . All the above quantities were obtained for each of the poten-
tials employed and are shown in the four panels appearing in Fig. 4 for the
case of the TTY potential.
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TABLE I
Expectation values of geometric parameters (Å, °) for the trimer systems studied in this
work. The standard deviation values are also shown

Parameter LM2M2 HfdB–(He) TTY KTTY

〈r2〉 43.47 43.05 42.99 41.10

〈r〉 5.90 5.87 5.90 5.74

〈r2〉1/2 6.56 6.59 6.56 6.41

〈∆r〉 2.94 2.92 2.86 2.85

〈α〉 29.6 29.6 30.3 29.7

〈∆α〉 12.7 12.6 12.5 12.7

〈β〉 48.5 48.5 49.1 48.6

〈∆β〉 16.4 16.3 15.9 16.4

〈γ〉 101.9 101.9 100.5 101.6

〈∆γ〉 25.3 25.3 24.7 25.3

〈cos HeHeHe〉 0.60 0.60 0.60 0.60



The calculations exhibit the same behaviour for all four potentials,
thereby confirming that the tiny differences among them are affecting
binding energy values (see Table III below) much more than other
observables related to configurational weights, where the PES differences do
not alter much the final wavefunctions. Our results confirm the findings
about radial distributions obtained in earlier work8,12,13, while also showing
some differences that we will discuss below:

(i) the radial distributions of the atom–atom distances, in the upper-left
panels, show the sudden drop of values when any of the atoms approaches
the repulsive wall (at ≈3 Å) of the 2B interaction. These distributions further
exhibit their maximum around 4 Å, as in earlier work8,12,13;

(ii) the distributions weighted by r2 (lower-left panels) appear to be much
broader after normalization and extend out to ≈100 Å. This feature indeed
confirms the very extended spatial distribution of the bound trimer and the
very flexible nature of its structural properties: as an example, we show in
Fig. 5 the same distributions for two of the potentials by comparing the
linear radial scale (upper panel) with the more extended log scale (lower
panel);
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FIG. 4
Computed radial distributions from the present DMC calculations using the TTY 2B potential
of ref.33 Right panel: the upper part reports the 4He distances from the center-of-mass (in Å–3),
while the lower part shows the same quantities in Å–1
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(iii) the radial distributions from the center-of-mass (rcm), are shown in
the upper-right panels and undergo a very marked drop as the distance in-
creases, levelling off to a nearly constant plateau at the small distances. The
numerical accuracy for very small r values becomes doubtful and therefore
we have not shown, being artifacts of the numerics, the marked spikes
given there by the calculations8. On the other hand, the corresponding
P r r( )cm cm

2× distributions in the lower-right panel do not show this patho-
logical behaviour;

(iv) the configurations where at least one 4He atom is very close to the
center-of-mass of the system are seen to be quite important and suggest
here, as already discussed for the angular distributions, the presence of ei-
ther isosceles or scalene triangles with one angle much larger than 90° and
the third atom nearly mid-way between the other two. This aspect of the
configurational shapes turns out to be rather important and will be further
discussed below.

One can also reconstruct individual radial distributions by analysing the
P(r) × r2 values and by assigning them to different radial bins. Thus, one can
obtain from it the distributions of r1, r2, r3 with the proviso that each dis-
tance is chosen such that it satisfies the relations r1 ≤ r2 ≤ r3 in order to be
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FIG. 5
Computed atom–atom radial distributions for two of the 2B potentials of this study. The lower
panel shows the distributions on a radial log scale
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selected. The triangular relationship was already satisfied by the DMC cal-
culations of the distributions. To check their numerical quality we run the
calculations backward using the radial distributions that we will show be-
low. We therefore reconstructed from them the Ptot(cos ϑ) versus cos ϑ distri-
butions discussed before and reproduced the values given by Fig. 3 with a
very small numerical error.

The results of the individual radial distributions were again obtained for
the four 2B potential functions, but we show in Fig. 6 only the results with
the TTY 2B potential. The data are normalized to 1 for the total radial distri-
butions and to 1/3 for each radial distribution, as was also done for the pre-
vious angular distributions. The left-hand panel reports the radial data in
units of Å–3 while the right-hand panel shows them in units of Å–1.

The following considerations could be made:
(i) the smallest of the triangular sides shows always the narrowest distri-

bution which peaks below 5 Å, for all potentials;
(ii) both the intermediate and larger distances show broader distributions

with tails extending our to more than 50 Å, indicating once more the very
floppy and extended nature of the present bound state;
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FIG. 6
Computed individual radial distributions for the three sides of the triangular structures. The
curves refer to r1 < r2 < r3 being selected in the binning. The left panels report probabilities in
Å–3 while the right panels give them in Å–1, each normalized to 1/3. The employed 2B poten-
tial is the TTY from ref.33
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(iii) the peaks of the P(r) distributions are around 5 Å, for r2 (the inter-
mediate value) and around 7 Å, for the largest side. Such maxima therefore
define a scalene triangle as the most likely structure of the triatomic config-
urations, in contrast with the earlier suggestions of dominant linear8,39 or
equilateral13 configurations.

However, given the strong floppiness of the present system, it becomes a
delicate task to devise methods through which one can still recover a more
conventional type of structure. The Ptot(cos ϑ) distributions, for instance,
were analysed in terms of multiple moments of the cosine and found to sat-
isfy the expected values up to the tenth moment, as also found with our
earlier DGF calculations12. One can also see that the radial and angular dis-
tributions of Figs 4–6 follow multimoment distributions which therefore do
not necessarily yield maxima which would refer to the same triangle for
each radial variable.

We, however, have made a further attempt at analysing the radial distri-
butions on the right-hand panels of Fig. 6 by selecting within them the rel-
ative weights of specific triangular structures, chosen according to the five
shapes that one can expect to find. They correspond to: equilateral (E), the
linear (L), to two different isoscele structures (I1 and I2) and to the scalene
(S) shape, all of fairly obvious definition.

In order to make a realistic partitioning of such rigid structures which
could be extracted from the radial distributions computed with the DMC
procedure, we have employed a random number generating routine and
separately binned the resulting weights of the triangles defined above.

In order to choose different levels of “rigidity” in the constraining rela-
tions employed to define the above triangular structures, we have further
included a variable tolerance parameter, ∆, which allows to employ broader
acceptance widths of distances values compatible with a given triangular
shape. We have selected four ∆ values, going from 0 up to 10%. The results
of the calculations (which employed about 100,000 random values in the
binning search) are reported in Table II for all the 2B potentials. One clearly
sees the following:

(i) when the constraint conditions are applied very strictly, i.e. the zero
tolerance case, one sees that more than 80% of the structures correspond to
scalene triangles with only 13% of isoscele structures and no linear configu-
rations;

(ii) when the tolerance level is increased to 1 and 5% we can see that all
calculations strongly reduce the presence of S structures with a marked in-
crease of both isosceles and linear configurations. However, the equilateral
triangles remain of negligible importance;
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TABLE II
Relative percentage of the triangular configurations selected in Fig. 4 as a function of the pa-
rameter ∆

∆ 0% 1% 5% 10%

Hfd–B (He)

E 0.40 0.40 0.70 2.33

I1 5.65 5.65 5.82 8.53

I2 11.30 11.30 17.94 30.01

L 0.00 0.11 9.34 19.22

S 82.63 82.51 66.18 39.89

KTTY

E 0.32 0.32 1.49 4.05

I1 3.74 3.76 6.15 8.64

I2 9.15 9.15 20.35 32.31

L 0.00 0.79 6.92 14.09

S 86.76 85.98 65.07 40.89

LM2M2

E 0.34 0.34 1.54 4.19

I1 3.5924 3.5766 6.0826 8.44

I2 9.54 9.54 21.27 33.56

L 0.00 0.84 6.67 13.59

S 86.50 85.67 64.42 40.18

TTY

E 0.34 0.34 1.49 3.96

I1 3.59 3.57 6.01 8.50

I2 8.94 8.94 20.26 32.40

L 0.00 0.88 6.89 14.00

S 87.11 86.24 65.32 41.130



(iii) to further raise the tolerance level up to 10%, as was estimated to be
in the earlier DGF calculations6,12, produces rather dramatic changes in the
distributions since S structures are now scaled down to about 40% only. On
the other hand, the I1 + I2 weights increase to around 40% as well, with fur-
ther appearance of nearly 20% of linear structures. The E configurations,
however, remain always of little importance. This unusual presence of lin-
ear structures is typical of the 4He3 system and was not found in similar cal-
culations on mixed trimers of the XHe2 type recently analysed by us14.

The above analysis of the DMC partial radial distributions shows the im-
portance of the initial tolerance choice made when talking about configura-
tional analysis: the marked dominance of scalene triangular structures is
clearly seen from all 2B potential results, while the latter could easily be
considered either isosceles or linear if we lowered the tolerance level, i.e.
weakened the “rigidity” parameter in the chosen structures. Clearly such re-
sults are very different from the more conventional picture of a unique
“molecular structure” as given by an ensemble of conventional atomic part-
ners which interact with each other in any stable molecule.

Trimer Energetics for the Ground State

Many different theoretical methods and interaction potentials have been
used in the last years to obtain the total binding energies of 4He3 trimer. In
Table III we have gathered our DMC calculations together with those given
by various other approaches. In all calculations, the triatomic potential en-
ergy surface has been built as a simple sum of 2B interactions.

An inspection of the Table III shows fairly good agreement among the
different theoretical methods (DMC, FE, VM and HC, the acronyms of
which are explained there), when they employ the same 2B potential with
the exception of the calculations with the KTTY 2B function where we get
the largest binding energy value as a result of the potential differences men-
tioned above.

One can therefore see that essentially all the employed theoretical ap-
proaches are able, within the same choice of a given 2B potential, to yield
binding energy values for the ground state of this system that agree well
with each other. Furthermore, the foregoing discussion has shown that the
energy values associated with the lowest bound state of this very special
system are much more sensitive to the 2B potential choice than the spatial
properties which could be extracted from the corresponding wavefunctions
and which are essentially given in a similar manner by all four potential
functions examined here.
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CONCLUSIONS

In this study we have carried out extensive DMC calculations to evaluate
the ground state quantum wavefunction of 4He3 via four different PES
constructed as sums of 2B potentials. We have also obtained the binding
energy values and have compared the present findings with earlier calcula-
tions. The differences between binding energies are very dependent on the
choice of the 2B potential, while the different methods with the same 2B
interaction yield essentially the same energy values.

Our DMC results with three of the 2B potentials are in agreement with
earlier studies while, on the other hand, the KTTY proposal of ref.35 turns
out to have too strong a well and to yield a binding energy lower than the
other potentials.

Making use of these wavefunctions we have then analysed the angular
and radial distributions produced by the calculations. Such data indicate
that both the equilateral and the linear structures are not the dominant
ones, in contrast with earlier suggestions8,39,40 while rather “flat” scalene
triangles are shown to have the largest probabilities within the configura-
tion distributions.

Collect. Czech. Chem. Commun. (Vol. 68) (2003)

20 Di Paola et al.:

TABLE III
Computed ground state binding energies (Eb) of 4He3 using the 2B interaction potentials dis-
cussed in the present work (all values in cm–1)

Computation Hfd–b (He)a LM2M2b TTYc KTTYd

DMC, present –0.0919(7)e –0.0869(1)f –0.0876(5)g –0.1464(4)h

DMC, from ref.8 –0.0910(5) – –0.0872(4) –

DMC, from ref.19 –0.0924(4) – – –

DMC, from ref.36 – – –0.08784(7) –

FEi, from ref.10 –0.0920(9) –0.0875(0) –0.0874(3) –

FEi, from ref.29 –0.0920(4) –0.0878(5) –0.0878(5) –

FEi, from ref.25 – –0.0870(2) – –

VMj, from ref.22 –0.0829(2) – – –

HCk, from ref.5 – –0.07367(7) – –

HCk, from ref.13 – –0.0870 – –

a From ref.30; b from ref.32; c from ref.33; d from ref.34; e error: ±0.000389, correlation length:
1.062; f error: ±0.000369, correlation length: 1.050; g error: ±0.000362, correlation length:
1.073; h error: ±0.000546, correlation length: 1.077; i Faddeev equations; j variational methods;
k hyperspherical coordinates.



Our results of Table II indicate that the system could be described as be-
ing chiefly a scalene triangle and that the use of less rigid triangular shapes
shifts a substantial amount of such structures into isosceles and quasi-linear
contributions but not into equilateral triangles.

The present study underscores the very special nature of the 4He3 system
and the delicate balance existing between the weak interactions among its
identical components and the highly quantum nature of its bound state.
This feature is indeed responsible for the difficulty in defining its spatial
shape via a conventional structural language.
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